An Exploration of the effects of Spurious Correlations in Deep Learning

Kevin Quinn
January 26, 2024

Abstract

How do deep learning models select important features and when can they be wrong? Spurious
correlations arise when models learn to rely upon features which are correlated with the target but
ultimately don’t have any general predictive value. In this project I explore this effect in synthetic
datasets with the goal of creating simple settings where models can fail, and understanding current
methods for fixing them.

1 Introduction

When using learning algorithms with real datasets a common issue that arises is one in which the trained
model learns to predict based upon subsets of features which are correlated with the target variable, but
that are ultimately irrelevant and unhelpful for model generalization. In other words, when we go to test
such a model on previously unseen data the predictions made can be unreliable and inaccurate. These
features which the model incorrectly learns as important are referred to as being spuriously correlated
with the target variable. One could imagine that in settings where predictions hold real consequences,
this issue can be particularly dangerous and impactful, making this an important issue to address.

In this project I propose to study and characterize this effect by both exploring current research in the
area and experimenting with the ideas in small synthetic datasets. My goal was to get a perspective of
the landscape for deep learning research, as well as an applied understanding of how to use deep learning
models while avoiding spurious pitfalls.

2 Related Work

At the core of understanding spurious correlations is understanding how models select important features
and create representations of them which are then used to make predictions. This is studied practically
with the use of synthetic datasets by [4], and on a more theoretical level with the use of information
theoretic techniques in [I2][10]. In the background of this project is the importance of understanding how
and why trained models attribute importance to different features, specifically for certain classes of models
and in different dataset settings. A popular idea suggested in [2] claims that in certain settings, models
tend to find shortcuts or spurious ways of selecting predictive features that don’t generalize. Likewise,
[11] reports that neural networks are often biased towards using the simplest features even if other more
complex ones are more predictive and generalizable.

Certain settings are more prone to spurious correlations than others. Larger, overparameterized models
are a distinct model setting studied by [9], in which spurious correlations happen readily in the training
process. Likewise, the spurious correlation effect happens when datasets contain multiple distinct groups
of data points that all differ on some irrelevant feature. Work by [I] uses X-ray diagnosis data from
distinct groups of hospitals to show that in this scenario, a trained model may learn to use such irrelevant

features to make inacurate predictions. Additional work from [I3] attempts to broadly categorize different
scenarios in which spurious correlations arise, and shows examples on well crafted synthetic data.

Finally, a subset of work done on this topic has proposed solutions within certain settings. This is studied
by [6][7] who propose re-training for only the final classification layer of a model using some small amount
of data that breaks the pattern of spurious correlations. As well as by [5][8] who both propose a strategic
re-weighting of the training samples in order to improve accuracy for groups in the data which are most
prone to negative effects of spurious correlations.

For the purposes of this project I focused mostly on [7] and [g]!

3 Preliminaries

Following notation from [8] I'll first make a few important definitions. Let X be a size n x d data matrix, y
be a corresponding vector of labels, and the pair D = (X, y) be their formed dataset. For the forthcoming
experiments I will typically make distinctions between the training dataset Diyain = (Xtrain, Ytrain) and a
testing dataset Diest = (Xtest, Ytest). 1N a setting with spurious correlations it is assumed that there exists
a set of groups G = {G1, ..., Gi} in the data. Each of these groups have corresponding labels g1, .., g; that
make up the target labels which are seen in y. Spurious correlations happen whenever certain features in
X are correlated with but not causally linked or predictive of the target labels in y.

A popular example might be a dataset where every sample corresponds to a single day, the features report
the amount of ice cream sold and the daily maximum temperature, and the target variable is a 0/1 variable
indicating if any patients were admitted to a hospital with heat stroke. One might find that ice cream
sales seem to be predictive heat stroke, but this totally ignores the real causal link with temperature.
Furthermore, a model trained to predict based upon ice cream sales may perform well in one location,
but if one tried to use it different setting (say in Alaska), they might find that predictions are no longer
accurate! This of course is a simplified example, but the principle is the same when we extend to more
complicated deep learning models. In this example there were 2 groups G and G4 corresponding to the
days with and without patients being admitted to a hospital. The distinction is important to make so
that we can later reason about the number of samples seen for each group (important for understanding
correlations) and so that we can reason about which group the model is the most inaccurate for (important
for fairness reasons).

The types of models I consider are simple convolutional neural networks with linear classification layer on
top. Let 6 be the set of all parameters for this model and let 0., and 6, be the subsets of parameters
corresponding to the convolutional and linear layers of the network separately. Baseline models will be
trained to learn parameters using ERM principles:

OEES R

But I will later introduce training model which adjusts this to re-weight the data. Throughout I will use
the cross-entropy loss function for £. Finally I will note that I use two measures to evaluate the model’s
predictions. Let § be the predicted labels for a given dataset. For my experiments I will evaluate model
performance based upon accuracy:

as well as worst-group accuracy:

1
w(g) =max — » 1,4
Geg |G| % vi=y

4 Dataset

To build a dataset for experimentation, I adapted the MNIST-1d dataset [3] in order to have spurious
correlations. The original dataset is a lower dimensional representation of the popular MNIST dataset for
classification of handwritten digits 0-9. It offers a simple and customizable setting to experiment with.
From this I took some pre-defined training Dypase = (Xtrain, Ytrain) and testing datasets Diest = (Xtest, Ytest)-
Points are 40 dimensional vectors, representations of which are pictured in figure

label=0 label=1 label=2 label=3 Ilabel=4 Ilabel=5 label=6 label=7 label=8 Ilabel=9

Figure 1: MNIST-1d is a noisy, low dimensional representation of handwritten digits 0-9. Here each entry
on the y axis corresponds to a feature and the variation on the z axis reflects feature values.

Inspired by [I1] I created some very simple feature changes to the training data set in order to introduce
spurious correlations. To a percent p of the samples in Xiain I added a large amount noise to a subset
of the features depending on it’s true label. For example, I might generate a sample from a truncated
(non-negative) gaussian distribution with mean 2 and variance 1, and then for every data point in the
training set with label 1 I'd add this value on to the features 1-5. Then for points with label 2 I'd
generate another noise sample and add this on to features 5-10. I denote this transformed dataset as
Dy, = (Xt/rain, Ytrain), and make a note that the training labels yrain remain the same. A representation
of this is pictured in figure

label=0 label=1 label=2 label=3 Ilabel=4 label=5 label=6 label=7 label=8 Ilabel=9

Pt |1
: =

Figure 2: Noise is added to distinct subsets of the features for each of the groups 0-9

The idea was to create some very simple correlations in the data. For example, the model could now
pick up on the fact that seeing large values in features 5-10 of a data point would be highly correlated
with having label 2, even though another subset of features are the true characteristics of the group. In
some cases the the noisy features overlap with the true ones, creating even more difficulties for the model.
Throughout the rest of the paper, I'll use p = 90% so that spurious correlations are particularly difficult
to avoid. With more time I think it would have been really interesting to observe how model performance
changed as p is varied.

)

The goal of this simple transformation was to create a setting where a model could pick up on these ’easy
spuriously correlated features and use them for prediction instead of the true ones. The result is that
when a model is trained on the spuriously correlated data it becomes artificially easier learn, showing

large but misleading accuracy scores. To see this visually, I've plotted a 2-dimensional embedding of
both the MNIST-1d and spurious MNIST-1d dataset in figures [3] and [4l In both images embedded data
points are colored according to their group label. The original dataset in figure [3]is more difficult to
decode, with many groups overlapping in the middle of the image. On the other hand, with spurious
correlations, figure [4] shows an embedding which is much easier to pick apart and to create boundaries
between classes for. In other words, groups are positioned more distinctly within the space. Of course,
with a 2 dimensional embedding this is not expected to be perfect, but I thought this was interesting and
worth a mention!

100 < o 1004
>

W ot

50 4

(d
50 N‘”’. « > 4 -501
” ”v‘?}i’a“o"f
(]
~1004 * A A ¢ ~100
—1‘00 —;50 ll) 5‘0 160 —1‘00 —ISO (I) 5‘0 l(IJO
Figure 3: MNIST-1d Figure 4: MNIST-1d with spurious correlation

For models trained on either the baseline or spurious datasets, I test on the same dataset Dies;. Once a
model has learned to pick up on the spuriously correlated features, it should become much harder for it to
perform well on the test data. Comparatively it should do much worse than the baseline trained model.
The idea is that by testing like this on non-spurious data, we can get a sense of how well the model learns
true feature representations in the presence of the spurious ones.

5 Experiments

With Dyases Dsp, and Dyegt I performed comparitive experiments with simple deep learning models, while
also attempting to recreate the results from [7] and [§]. I began the with same convolutional neural
network model used by [3], which is composed of a three layer convolutional feature extractor that’s
passed into a final linear classification layer. The hidden size of the convolutional layers is 256 and I train
with batch size of 100 using an adam optimizer. The model is validated by first performing training on
Dyase with which we can achieve about 96% test accuracy and 90% worst group accuracy. This can be
immediately compared to performance of a the same model trained upon Dgp, in which case we find about
65% accuracy and 44% worst group accuracy, indicating that the spurious noise has a clear detrimental
effect on test accuracy. The test performance results are pictured in figures [5 and [6]

Importantly I also tried some strategies from [7] and [8] which aim to fix the problem:

Re-train The first strategy from [7] freezes all the parameters 6.y, within the convolutional layers of
the model with the goal of only retraining the parameters for the last linear classification layer of the
network, 6j;,. To do so, a small amount of data unaffected by the spurious noise is needed for re-training.
In the results shown, I re-train the last layer of the model originally trained with Dy, with a random
sample containing 25% of the entries from Dy,e.. The advantage of this strategy is both simplicity and
speed. Re-training the last layer is fast and doesn’t require much memory — this layer is typically much
smaller than the convolutional feature extractors. The disadvantage, however, is the need for a set of

Test accuracy

Test accuracy

> 100
100 ©
_
=
3
> / 77 <
® - ——————— a
- > 50
5 | 1) /]
50 = base
|9} (G} /
% base et / spurious
spurious 4 = re-trained
= re-trained g \ / re-weighted
re-weighted o1+~ . . .
0 T T T T 0 2000 4000 6000
0 2000 4000 6000 Train Step

Train step

Figure 6: Worst Group Accuracy test perfor-

Figure 5: Accuracy test performance
mance

non-spurious data to re-train with. In practice I'd imagine that without a clear handle on what’s spurious
or not, it’d be pretty difficult to settle on a good dataset to re-train with. As seen in figures [f] and [6] this
strategy does seem to significantly improve test accuracy, but doesn’t improve much in terms of worst
group accuracy.

Re-weight The next strategy introduced by [§] does not come with the same dataset requirements and
instead involves a simple re-weighting of the data samples within the objective. The approach consists
of two stages: In the first we’ll train on Dy, exactly like we did before to find parameters écnn and élin-
However in the second we will redefine the objective, and re-train for the linear parameters 6y, keeping
the same convolutional parameters from the first stage:

Lreweight (Bin) = Y 1 L1, Yi5 (Benn, i) + A [0rin — O ||

i=1

We’'ll keep the same cross entropy loss function for ¢, but now all that’s happening is that training
samples are now weighted according to parameters p; (instead of every point having equal weight). It also
introduces a regularization term to ensure that the re-trained parameters don’t shift too far from those
found in the first stage. Importantly, the authors choose weights p; as follows:

/B .ef'ypi
i = %7_71,
Zj By, e~ P

Where $,, is 1 over the number of samples having label equal to y;, p; is the probability with which the
model from stage 1 predicts sample ¢ as belonging to the correct group, and -y is a temperature parameter
controlling how much we boost or reduce weights. In words, by assigning weights like this we 1) control
for irregular group sizes with s and 2) boost importance of samples which are likely to be misclassified
with e=7Pi,

Unfortunately I found that in my experiments this strategy was very un-effective, often performing worse
than the original model. I believe the reason is because the model trained in stage 1 had very high training
accuracy, i.e. p; values were consistently large. In other words the boost that was supposed to be given
to misclassified examples that needed to come from seeing small p; values was not there. It’s somewhat
unintuitive, but I think I’d need to make the training problem harder in order for this strategy to work
better!

To summarize, while re-training did see moderate success, these strategies are not without their own

unique shortcomings. Interestingly we can analyze saliency maps for each of the models to see what they
focused on and or missed.

Figure 7: Base Figure 8: Spurious

Each plot in figures [7] [8, [0} and [I0] shows gradient strengths attributed to each of the 40 features of a
training sample from Dg,, when passed into the 4 different pre-trained models: base, spurious, re-trained,
and re-weighted. Darker red colors indicate larger gradient information and suggest that the model is
placing strong importance upon those features when trying to predict the label of the given sample. The
dashed grey line indicates what the original sample looked like before adding general noise or targeted
spurious noise. One can notice that the base model correctly attributes strong importance to the correct
features even in the presence of spurious ones. The others, however, all fail to distinguish the correct
features as important, often finding small noisy features to be the ones with strongest gradients. It’s
entirely possible that the model found spurious features other than the ones I actually tried to give the
data!

6 Discussion

For me this project was a success because I got a chance to read some papers and implement some simple
deep learning models in an interesting way. However, I was disappointed that the results for the re-training
and re-weighting strategies were lackluster. But still I think some of these shortcomings are important
to address: 1) Re-training requires additional non-spurious data and 2) Re-weighting requires that the
samples that need the most importance are misclassified within the original training stage. If I were to
continue further with this I would try two things: firstly I'd experiment more with changes to Dyase,
perhaps trying to make the training problem more difficult in order to see if I can find a scenario where
re-weighting does well. The other thing is that I would experiment with the fraction of training samples
for which I add in spurious noise. I'd really like to see if there’s a threshold amount beyond which the
problem just becomes intractable. I think there’s still a lot of good questions here and I really think
there’s something to be said for experimenting with this type of really simple data!

Figure 9: Re-trained Figure 10: Re-weighted

References

1]

2]

ESCS

Rhys Compton, Lily Zhang, Aahlad Puli, and Rajesh Ranganath. When more is less: Incorporating
additional datasets can hurt performance by introducing spurious correlations. In Machine Learning
for Healthcare Conference, pages 110-127. PMLR, 2023.

Robert Geirhos, Jorn-Henrik Jacobsen, Claudio Michaelis, Richard Zemel, Wieland Brendel, Matthias
Bethge, and Felix A Wichmann. Shortcut learning in deep neural networks. Nature Machine
Intelligence, 2(11):665-673, 2020.

Sam Greydanus. Scaling down deep learning, 2020.

Katherine Hermann and Andrew Lampinen. What shapes feature representations? exploring datasets,
architectures, and training. Advances in Neural Information Processing Systems, 33:9995-10006,
2020.

Badr Youbi Idrissi, Martin Arjovsky, Mohammad Pezeshki, and David Lopez-Paz. Simple data bal-
ancing achieves competitive worst-group-accuracy. In Conference on Causal Learning and Reasoning,
pages 336-351. PMLR, 2022.

Pavel Izmailov, Polina Kirichenko, Nate Gruver, and Andrew G Wilson. On feature learning in the
presence of spurious correlations. Advances in Neural Information Processing Systems, 35:38516—-38532,
2022.

Polina Kirichenko, Pavel Izmailov, and Andrew Gordon Wilson. Last layer re-training is sufficient for
robustness to spurious correlations. arXiv preprint arXiv:2204.02937, 2022.

Shikai Qiu, Andres Potapczynski, Pavel Izmailov, and Andrew Gordon Wilson. Simple and fast group
robustness by automatic feature reweighting. In International Conference on Machine Learning,
pages 28448-28467. PMLR, 2023.

Shiori Sagawa, Aditi Raghunathan, Pang Wei Koh, and Percy Liang. An investigation of why
overparameterization exacerbates spurious correlations. In Hal Daumé IIT and Aarti Singh, editors,
Proceedings of the 37th International Conference on Machine Learning, volume 119 of Proceedings of
Machine Learning Research, pages 8346-8356. PMLR, 13-18 Jul 2020.

Andrew Michael Saxe, Yamini Bansal, Joel Dapello, Madhu Advani, Artemy Kolchinsky, Bren-
dan Daniel Tracey, and David Daniel Cox. On the information bottleneck theory of deep learning. In
International Conference on Learning Representations, 2018.

Harshay Shah, Kaustav Tamuly, Aditi Raghunathan, Prateek Jain, and Praneeth Netrapalli. The
pitfalls of simplicity bias in neural networks. Advances in Neural Information Processing Systems,
33:9573-9585, 2020.

Ravid Shwartz-Ziv and Naftali Tishby. Opening the black box of deep neural networks via information.
arXiv preprint arXiw:1705.00810, 2017.

Gautam Sreekumar and Vishnu Naresh Boddeti. Spurious correlations and where to find them. arXiv
preprint arXiw:2308.11043, 2023.

	Introduction
	Related Work
	Preliminaries
	Dataset
	Experiments
	Discussion

