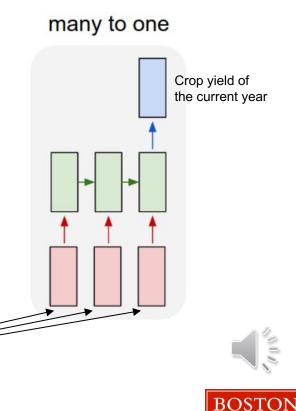

Predicting Global Wheat Crop Yields Using a Combination of CNN and LSTM Blocks

Sungjoon Park Apr. 30th, 2024

Objective and Data

- Objective: Making a model that can accurately predict global wheat crop yields using meteorological image datasets
- Data
 - Input: Global near-surface temperature and precipitation heatmaps (Monthly)
 - Source: Climate Data Store by Copernicus
 - Samples (Left: near-surface temperature, Right: precipitation)

- Target: Global yearly wheat crop yield per hectare (unit: ton)
 - Source: Our World in Data
- Periods: Training (1980-2015), Validation (2016-2018), Test (2019)

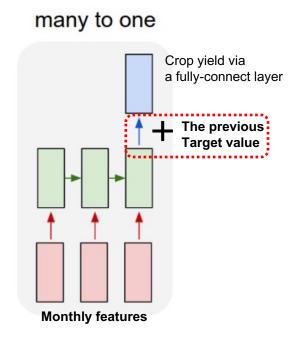


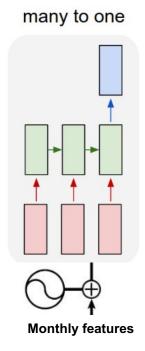
Model

CNN block

Monthly Monthly Temp Images **Precip Images** ResNet ResNet Monthly Temp Monthly Precip CNN features CNN features Monthly concatenated **CNN** features

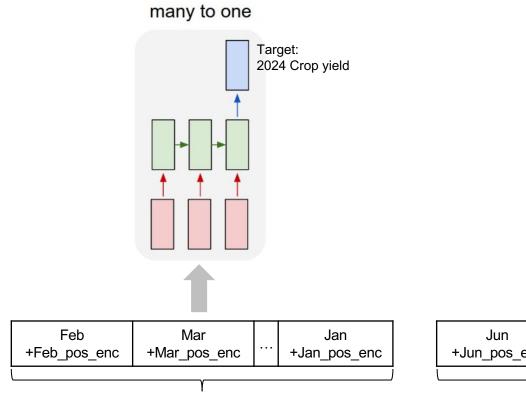
LSTM block

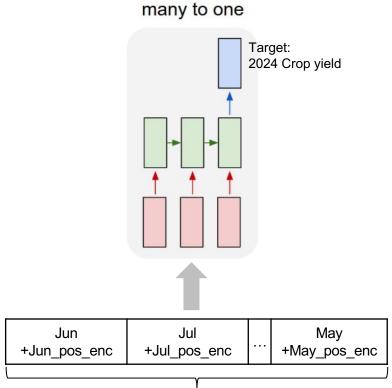



Boston University Faculty of Computing & Data Sciences

Two Tricks

Auto-regressive prediction


Positional Encoding



Positional Encoding Example

Monthly features for each layer (Feb 2023 ~ Jan 2024)

Monthly features for each layer (Jun 2023 ~ May 2024)

Model Training and Performance

Configurations

Framework: PyTorch

CNN Block Pre-trained Model: ResNet15

Loss function: MSE

Optimizer: Adam

Learning rate: 1e-3

Hyperparameter-tuning: hidden size of the LSTM

Results

Hidden Dim	64	128	256	512
Epoch when best	100	100	100	29
Test MSE	0.0057	0.005	0.0014	0.0006

Limitations and Future Work

- Incorporate additional inputs
 - Humidity and soil type heatmaps
- Hyperparameter-tuning: hidden size of the LSTM
 - Comparison study
- Results
 - More diverse hyperparameter-tuning
 - CNN Block pre-trained model
 - Position Encoding Strategy
 - Loss functions (e.g. L1 Loss)
 - Optimizers
 - Learning rates

