
Human Fall Detection System

Yinzhou Lu, Hang Yu

Abstract

Deep learning has significantly advanced how it solve complex problems in
various areas like image recognition, language processing, and healthcare. Partic-
ularly, convolutional neural networks and recurrent neural networks can analyze
large amounts of data to recognize patterns and make decisions, improving tasks
like diagnosing diseases or translating languages.

Our project applies these advanced technologies to help elderly people stay
safe in their homes. The elderly is at risk of falling, and if the falling situations
are not detected on time, they can lead to serious health problems or even be
fatal. By creating a system that uses deep learning to monitor and detect when
an elderly person falls, it can alert family members or emergency services right
away, potentially saving lives.

1 Introduction

The inspiration for this project comes from recent incidents where elderly individuals
have suffered due to falls that were not promptly attended to, highlighting a critical
area where artificial intelligence can make a substantial difference. By leveraging what
we have learned and the deep modeling frameworks developed by researchers, we aim
to create a system that not only enhances the safety of the elderly in their homes but
also pushes the boundaries of how deep learning technologies can be applied to improve
quality of life and care in our society.

Figure 1: The image shows four pre-trained models of YOLOv5, with each model’s
icon complexity increasing from left to right, representing an increase in the size and
complexity of the model.

1



Figure 2: Python code to call mobile equipment camera.

The objective of this project is to develop a human motion detection system that
significantly contributes to eldercare by ensuring their safety and well-being. With deep
learning experiencing rapid innovation across various fields such as image and speech
recognition, natural language processing, and medical image analysis, we see a potent
opportunity to apply these technologies to create a practical solution that addresses
a pressing societal issue—the risk of elderly people suffering from falls without timely
assistance.

Some previous articles explored the application of deep learning in human fall detec-
tion. In the paper ”Improved YOLOv5 Method for FallDetection”[3], the author chose
YOLOv5 and introduced the ECA mechanism to achieve cross-channel information in-
teraction of feature maps. The accuracy can be improved through some parameters.
PANet for the neck is modified to weighted BiFPN to obtain better fusion features.
Finally, the effectiveness of the improved algorithm was verified on the Le2i fall detec-
tion data set, and the multi-camera fall data set was used to test the versatility of the
improved algorithm. In the article ”Accelerometer-Based Human Fall Detection Using
Convolutional Neural Networks”[4], the author considers applying convolutional neural
networks in this field and performing deep learning for fall detection in IoT and fog
computing environments.

But we found that the data sets used for training in these projects are relatively
small, and since most of the image acquisition methods come from cameras, the images
in the database are also relatively single. So, the idea is to get various images from
the internet as training and test sets and label these images. We will utilize a cutting-
edge deep learning model (YOLOv5), known for its ability to efficiently process and
analyze complex data. These models will form the backbone of our system, enabling
it to analyze images or videos from smart home devices such as cameras to accurately

2



Figure 3: Here are some of the images included in the database we made. Pictures of
people sitting down, people standing up, people falling down and people moving.

detect and differentiate human poses. During the process of adjusting parameters of
our model, we continuously trained it to improve accuracy. In addition, a call to the
mobile device’s camera allows our model utilize detection on the mobile device.

2 Related work

2.1 Deep learning model (YOLOv5)

YOLOv5 (You Only Look Once version 5) is a popular object detection algorithm, an
unofficial version of the YOLO family of algorithms, maintained and updated by an
open source community. The core idea of the YOLO algorithm is to simultaneously
predict multiple bounding boxes and class probabilities in an image through a single
forward propagation, enabling efficient and fast object detection. YOLOv5 continuously
develops this philosophy, offering several improvements and optimizations to improve
the accuracy and speed of detection.[1]

The pre-trained model of YOLOv5 is trained for data sets of various sizes and can
be used for detection tasks of various objects. These pre-trained models have been
trained on a wide range of data sets, such as the COCO dataset, so they can recognize
and locate a wide variety of common objects. Figure 1 shows four kinds of pre-training
models, from small YOLOv5s to large YOLOv5x. Users can choose the right model
according to their needs and resources. These models allow users to quickly start
projects without having to train from scratch, especially when computing resources are

3



limited. The information corresponding to the text below the figure 1 shows the size
(in MB) of each model, the inference time (in milliseconds) on the V100 GPU, and the
mAP (mean accuracy) performance on the COCO dataset. This indicates a trade-off
between model size and performance: larger models generally have better performance,
but take longer to infer and have larger model files. Since we needed to use our own
computer for parameter adjustment most of the time, we decided to use the YOLOv5s
model due to the limited performance of private computers.

2.2 Human fall dataset

Over the past few years, a number of methods have been proposed for human fall
detection. Most existing methods are evaluated based on pruned data sets. However,
some researchers have come up with and produced very advanced databases on human
falls. for example, the author of ”A multi-modal multi-view dataset for human fall
analysis and preliminary investigation on modality”[6] produced a dataset by capturing
50 Built from the activity of the subjects, it includes seven overlapping Kinect sensors
and two wearable accelerometers. In the paper ”Dataset for human fall recognition in
an uncontrolled environment”[2], the authors created a database that simulated five
types of falls and five types of activities of daily living. The data include front fall,
back fall, left fall, right fall, sitting up fall and so on.

However, these databases only do a lot of image processing for a single scene. While,
in real life, the camera needs to be able to effectively identify human body posture in
different scenes. Therefore, the above database scenes are too simple, lack of rich scene
transformation. Therefore, the database we make needs to contain a large number of
rich scenes and different forms of different human poses.

3 Proposed Work

3.1 Call Camera

Due to equipment limitations, we did not use a real outdoor camera for this project.
We used cameras on our mobile devices. The advantage of the mobile camera is its
convenience, we can carry the device with us at all times, and do not have to be affected
by the cables and network.

We used IP adress method to call the camera. The process implemented in pyton
code is shown in the Fig 2. However, it is important to note that the two devices,
namely the mobile device and the computer, must be under the same network.

3.2 Datasets

We used the database from Fall Detection dataset. The database contains a training
dataset of 374 images and a validation dataset of 111 images, as well as corresponding
coordinates and labels. In order to expand our database, we obtained a large number
of pictures of human poses from the Internet. The images included pictures of people
standing, people walking, people sitting, people moving, and people falling (Fig.3). We
increased the number of images used for training to 2430 and the number of images used
for verification to 854. This volume of databases met both our requirements for model

4

https://www.kaggle.com/datasets/uttejkumarkandagatla/fall-detection-dataset


training and the hardware requirements of our equipment. We divided these images
into three categories: up, bend, fall. For those who remained upright or walking, we
classified them into up states. For pictures where the body was bent, such as sitting,
crouching, or lying on one’s side, we classified them as bending. Finally lying down, or
losing center of gravity, was classified as the fall state.

However, such a large amount of picture data still could not meet our training
requirements. In the process of training, we still needed detailed information about
the relative image, including the coordinate position of the person in the picture and
the category of the human posture in the picture. To make it easier for us to take
the coordinates and labels and convert them into a format that YOLOv5 can read, we
used a tool named makesense.ai. It was a free to use online image annotation tool that
was ideal for preparing datasets in computer vision deep learning projects. Because
it was browser-based, there was no need for complicated installation steps, and users
simply visit the website to get started. It aimed to save users time in photo tagging
by integrating the latest artificial intelligence models to provide label recommendations
and automate repetitive tagging work. We ended up with a text file (in txt format)
that corresponds to the number of images, and each line in the file represents a marked
object. From left to right is the index of the object class (we labeled fall 0, up 1, bend
2), the X-coordinate of the object center, the Y-coordinate of the object center, the
width of the object, and the height of the object. All coordinates and dimensions were
provided in scale form, rather than pixel values, so that our model could accommodate
input images of different sizes.

3.3 Parameter changed

In the process of experiment, we needed to continuously optimize the trained model. In
order to improve the overall accuracy of our model and reduce the loss in the training
process, we adjusted the following parameters.

• Batch size: It refers to the number of samples that are passed through the net-
work and processed at one time when training a neural network. This parameter
directly affects the training process of the model, including the learning speed,
memory requirements, and training stability. Large batch sizes require more mem-
ory resources because more samples are propagated both forward and backward-
across the network, while also making more efficient use of the parallel processing
capabilities of modern computing platforms (such as Gpus and Tpus), which can
lead to significantly shorter training times.[5] However, too large a batch can also
result in a reduction in the number of steps per epoch, which can be detrimental
to the network’s exploration in parameter space. (Fig 4) The choice of batch size
therefore requires a balance between training efficiency and model performance.
The default batch size is 16. After our analysis, we believe that a higher batch
size will be more conducive to improving the performance of our model. We tried
20,24,28, and 32. Finally, we decided to change the parameter size to 32 to meet
our requirements for the model.

• Learning rate: It is an important concept in the field of machine learning and
deep learning, and is often used in gradient descent and its variant optimization

5

https://www.makesense.ai


Figure 4: The effect of different batch sizes on the model.

algorithms. The learning rate defines the size of the compensation for updating
parameters during optimization. When training a model, the learning rate repre-
sents how much the model parameters change with each iteration. If the learning
rate is too high, the model may not be able to find the minimum value of the loss
function. If the learning rate is too low, the model will converge very slowly.[7]
However, since we are using the pre-trained model of YOLOv5, in order to re-
tain the features learned by the pre-trained model and avoid a series of problems
such as overfitting, we need to use a small learning rate to fine-tune. The default
learning rate is 0.01, after our adjustment, we think that the most appropriate
learning rate is set to 0.005.

• Epoch: An epoch refers to one forward pass and one backward pass of the entire
data set during training. It is closely related to the adequacy of model learning
and the risk of overfitting. By training multiple epochs, the model is able to learn
the data multiple times, each time further adjusting its parameters based on what
it learned the previous time. However, too many epochs may result in an overfit,
and too few epochs may result in an underfit. The default epoch value is 20, and
we need to dynamically adjust the results to prevent overfitting and underfitting.
We tried 25,30,35,40,45. But we overfit when we tried 45. So we end up with an
epoch of 40.

• Optimizer: The official optimizer for yolov5 is SGD, but after extensive testing we
found that it did not live up to our expectations. This was because SGD tended
to oscillate near minimum values rather than converge directly, and in standard
SGD, all parameters were updated at the same learning rate, which might not
work for all parameters. So we replaced it with Adam optimizer. Compared with
SGD, Adam automatically adjusts the learning rate of each parameter, calculates
the adaptive learning rate based on the update history of the parameter, and
requires less manual adjustment of the learning rate.

6



4 Evaluation

In this section, we visualize the training process and the results. Are represented by
figure 5 and 6.

Figure 5: Performance Metrics dashboard when training a neural network, which shows
changes in various metrics during training and validation. The above two lines represent
the results of training our pre-trained model with default parameters. The following
two lines are the results we get after adjusting the training parameters.

Figure 5 shows the changes of various performance indicators in the training process.
The two graphs in the first column on the left display bounding box losses for the train-
ing and validation datasets, quantifying the discrepancy between the model’s predicted
bounding boxes and the actual bounding boxes. It is observed that the loss values
in both graphs demonstrate a decreasing trend; however, further testing is necessary
to ascertain if the lowest point has been achieved. The graphs in the second column
illustrate object losses, which assess the model’s precision in predicting the presence of
objects. For object detection models, this entails identifying the existence of objects of
interest within an image. Similarly, parameter adjustments are required to minimize
the loss values. The two graphs in the third column present the model’s accuracy in
distinguishing between different classes on the training and validation datasets. The
fourth column’s graphs depict the model’s accuracy and recall rates. Accuracy is the

7



proportion of correctly identified samples as positive by the model, whereas recall de-
notes the proportion of all positive samples accurately identified by the model. The
final column’s graphs display the model’s mean Average Precision (mAP) metrics at
various Intersection over Union (IoU) thresholds. mAP is a standard metric for evalu-
ating the performance of object detection models. mAP0.5 refers to the mAP when the
IoU threshold is 0.5, and mAP0.5:0.95 represents the average mAP as the IoU varies
from 0.5 to 0.95.

Comparing the two graphs, we can see that after we adjusted the parameters, the
training and validation loss curve corresponding to the second graph is smoother and
more stable than that of the first graph, indicating better generalization ability and less
overfitting of the training data. Accuracy and recall curves are also smoother, showing
less fluctuation, indicating more stable and reliable model performance. In terms of
mAP score, both IoU=0.5 and IoU=0.5:0.95 are higher and show steady growth, which
means that the model has better object detection ability. In particular, there was a sig-
nificant improvement in Maps with IoU=0.5:0.95, indicating that the model performed
well even under more stringent standards of detection accuracy. Overall, our adjusted
model shows better stability and performance on all metrics.

Figure 6 is two confusion matrix illustrating the classification model’s performance
across different categories. In this matrix, rows correspond to the classes predicted by
the model, while columns represent the actual classes. Each cell indicates the proportion
of samples genuinely belonging to a real class predicted by the model to fall into a
specific class. The gradient scale on the right demonstrates that darker colors signify
higher accuracy.

In these two confusion matrices, the rows represent the predicted class of the model
and the columns represent the actual class. There are ”fall detected ”,” up”,”bending”,”
background”. As can be seen from Figure 6, when trained with default parameters, the
model performed well on ”fall detected” and ”up” with true-to-truth ratios of 0.92 and
1.0, respectively, meaning that there was a high probability that both actions were
correctly classified. However, the classification of ”background” is somewhat poor, and
some of the other three types of actions are misclassified as ”background”. When we
changed the model using parameters, we made the accuracy of the resolution of both
”fall detected” and ”bending” slightly increase, while the resolution of the ”up” type
decreased slightly. Overall, both models performed very well, both before and after the
parameter changes, but the modified model performed slightly better.

5 Conclusion

At present, we have completed the establishment of the training database, the adjust-
ment of the parameters of the training process, the call of the camera of the mobile
device and the correct prediction of the real-time video using the model. The final result
can be seen here:Final result. Overall, our project has achieved good results and the
results are very satisfactory. However, improvements can still be made in the following
areas: First of all, in the training of the model, limited by our personal equipment, we
can not use large pre-trained models for training. Second, the technology still has the
potential to be applied to more practical areas, such as home medical robots, when the
robot detects that someone has fallen, it can move next to the person for the first time

8

https://drive.google.com/file/d/190JJMRwsNdwVzW-kRUMOgeH1RofuDEX8/view?usp=sharing


Figure 6: Confusion matrix drawn from the training model. The first matrix represents
the confusion matrix trained on the pre-trained model using default parameters. The
second matrix adjusts the training parameters and then trains the confusion matrix.

9



to implement rescue. So we still have a long way to go.

References

[1] Alexey Bochkovskiy, Chien-Yao Wang, and Hong-Yuan Mark Liao. Yolov4: Optimal
speed and accuracy of object detection. 2020.

[2] José Camilo Eraso Guerrero, Elena Muñoz España, Mariela Muñoz Añasco, and
Jesús Emilio Pinto Lopera. Dataset for human fall recognition in an uncontrolled
environment. Data in Brief, 45:108610, 2022. ISSN 2352-3409. doi: https://doi.
org/10.1016/j.dib.2022.108610. URL https://www.sciencedirect.com/science/

article/pii/S2352340922008162.

[3] Jun Peng, Yuanmin He, Shangzhu Jin, Haojun Dai, Fei Peng, and Yuhao Zhang.
Improved yolov5 method for fall detection. pages 504–509, 2022. doi: 10.1109/
ICIEA54703.2022.10006129.

[4] Guto Leoni Santos, Patricia Takako Endo, Kayo Henrique de Carvalho Monteiro,
Elisson da Silva Rocha, Ivanovitch Silva, and Theo Lynn. Accelerometer-based hu-
man fall detection using convolutional neural networks. Sensors, 19(7), 2019. ISSN
1424-8220. doi: 10.3390/s19071644. URL https://www.mdpi.com/1424-8220/19/

7/1644.

[5] Samuel L. Smith, Pieter-Jan Kindermans, Chris Ying, and Quoc V. Le. Don’t decay
the learning rate, increase the batch size, 2018.

[6] Thanh-Hai Tran, Thi-Lan Le, Dinh-Tan Pham, Van-Nam Hoang, Van-Minh Khong,
Quoc-Toan Tran, Thai-Son Nguyen, and Cuong Pham. A multi-modal multi-view
dataset for human fall analysis and preliminary investigation on modality. pages
1947–1952, 2018. doi: 10.1109/ICPR.2018.8546308.

[7] Matthew D. Zeiler. Adadelta: An adaptive learning rate method, 2012.

10

https://www.sciencedirect.com/science/article/pii/S2352340922008162
https://www.sciencedirect.com/science/article/pii/S2352340922008162
https://www.mdpi.com/1424-8220/19/7/1644
https://www.mdpi.com/1424-8220/19/7/1644

	Introduction
	Related work
	Deep learning model (YOLOv5)
	Human fall dataset

	Proposed Work
	Call Camera
	Datasets
	Parameter changed

	Evaluation
	Conclusion

