Recommending Academic Papers with
Graph Neural Networks
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Motivation
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Problem Statement

Given a paper, can we leverage graph neural networks (GNNSs) to
provide recommendations to helpful prior or future readings based on
a citation network?



Link Prediction

Predict missing edges in a graph:
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Dataset: CORA-ML

e Directed: Citing paper points to cited paper

e 2995 papers
o Each paper represented by 2879-dimensional embedding
o Papers in the topic of machine learning

e 8416 citation relationships

https://github.com/abojchevski/graph2gauss/tree/master



Model & Training Parameters

e Graph Encoder:
o Conv (2879, 128)
o RelLU
o Conv (128, 64)
e Decoder:
o Cosine similarity
Split: 85% Train, 5% Validation, 10% Test
Optimizer: BCEWithLogits
Learning rate: 0.001
Epochs: 100



Error
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1.0

0.8 A

0.6 A

0.4 -

0.2 A

— train
—— validation

0.0

Epoch

80

Test ROC-AUC Score: 0.929



Qualitative Evaluations

A COMPRESSION ALGORITHM FOR PROBABILITY
TRANSITION MATRICES”®

WILLIAM M. SPEARST

Abstract. This paper describes a compression algorithm for probability transition matrices.
The compressed matrix is itself a probability transition matrix. In general the compression is not
crror {ree, but the error appears to be small even for high levels of compression.

Key words. probability transition matrix, transicnt behavior, compression, lumping, aggrega-
tion
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Using Markov Chains to Analyze GAFOs N——

Kenneth A. De Jong

Thomas Back
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Analyzing GAs Using Markov Models with
Semantically Ordered and Lumped States *
Abstract. Evolutionary putation uses putational models of evolution-

ary processes as key elements in the design and implementation of computer-

based problem solving systems. In this paper we provide an overview of evolu-
tionary computation, and describe several evolutionary algorithms that are
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Qualitative Evaluations

A COMPRESSION ALGORITHM FOR PROBABILITY
TRANSITION MATRICES”

WILLIAM M. SPEARSt
Abstract. This paper describes a compression algorithm for probability transition matrices.

The compressed matrix is itself a probability transition matrix. In general the compression is not
crror {ree, but the error appears to be small even for high levels of compression.

Key words. probability transition matrix, transicnt behavior, compression, lumping, aggrega-
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Multiassociative Memory Evolving Optimal Neural Networks Using

Genetic Algorithms with Occam’s Razor”*
John F. Kolen

Jordan B. Pollack Byoung-Tak Zhang

Heinz Muhlenbein

5 citations 112 citations



Discussion

e Although it can point to somewhat relevant papers, more information
is needed for the model to be able to recommend pedagogically

e Limitations
o Small dataset size
m Average node degree of 2.8
Unknown initial node embedding method
A “good” recommendation is ambiguous
Restriction to academic publications makes more fundamental
expository pieces a rarity



Next Steps

e Collect and/or test on larger dataset

e Use different embedding methods and incorporate content
embeddings into prediction

e Inductive Learning to deal with unseen node embeddings



