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Abstract

The creation of powerful chess programs in past years has made cheating in the
game easy and prevalent. This fact has facilitated a need for high quality chess anti-
cheats capable of detecting AI play. While such algorithms exist, they often focus
on better-than-human play as opposed to non-human play. To address this issue, in
this paper we introduce ChessGAN. ChessGAN is a generative adversarial network
whose generator learns to play human-like chess, while its discriminator is trained to
distinguish human moves from AI moves. We find that while such a discriminator was
capable of distinguishing its generator, this training did not generalize to all human or
Al play. However, we did find that the use of this discriminator aided in the training of
a generator which played high-quality chess with a move distribution closely resembling
that of human players.

Github Repo: https://github.com/OsamaDabb/Chess_anti_cheat

Introduction

As chess engines have become more powerful in the past decades, opportunities for their
misuse in casual and professional settings have increased dramatically. As a result, many
chess organizations and game hosting websites such as chess.com have had to adapt “anti-
cheat” technologies for detecting and penalizing this form of misuse. While these entities
rarely discuss the underlying algorithms, it is known that many rely on statistical analysis of
move quality as well as machine learning to identify moves that “surpass confirmed clean
play.” [8] The issue with such algorithms is that while they cannot distinguish general
human play, from non-human play. This fact brings to light two rooms for growth in
current chess Al: first, the potential for Als capable of playing high-quality human-like
moves, and second, the need for algorithms capable of detecting such Als to prevent their
illicit use.


https://github.com/OsamaDabb/Chess_anti_cheat

In this paper we explore both sides of this paradigm. We do this by creating an adversarial
system:

1. The discriminator—representing anti-cheat algorithms—will be fed a combination
of games from real players and those played by the generator, and will have to
discriminate between the human and Al.

2. The generator—representing an engine used to cheat—will be trained to play chess
as well as possible while still evading detection by the discriminator.

To this end, we will employ General Adversarial Networks (GANs) to simultaneously train
a proficient chess agent and a robust chess detector showcasing their efficacy in enhancing
both human-like strategic gameplay and sophisticated detection of chess Als.

Related Work

Research on chess cheating is relatively scarce. Though large chess hosting websites have
their own algorithms, these are never made public. One of the only available resources
on the subject comes from Reagen et al. [4], which relies on analyzing move likelihoods
conditioned on a players Elo, a rating system which quantifies a player’s skill [I]. On the
other hand, some articles discuss the inherent risks of judging chess play probabilistically
such as Barnes and Hernandez-Castro [3] which emphasizes the inherent uncertainty of such
approaches by showing how games that are provably cheat-free had moves or sequences that
most methods would classify as engine assisted. The combination of these works emphasizes
the significance and demand for new technologies in the field. Currently, publicly available
methods of play analysis are underdeveloped and rely on probabilistic models comparing
expected level of play to actual level, rather than judging by the nature of the moves
themselves.

With regards to chess-playing agents, the state-of-the-art is dominated by tree-search al-
gorithms such as stockfish which use neural network board evaluations in conjunction with
minimax or Monte Carlo tree search. However, there is also precedent for chess agents using
deep-learning and behavioural cloning. First, Silver et al. [12] showed how convolutional
neural networks could be used in grandmaster level chess play. Second, Mcllroy Young
et al. [9] provides evidence that using behavioural cloning on human chess games creates
networks that are significantly better at predicting human-like moves than a traditional
tree-search approach. Lastly, Ruoss et al. [11] shows that one can achieve grandmaster
level play using imitation learning that uses no tree-search.

On the other hand, the use of a GAN training structure for either chess play or chess
cheat detection is a topic that has not been explored to the best of our knowledge. The
use of GAN architectures to train a network to avoid cheat detection has been explored
in the realm of first-person shooter games (Kanervisto et al., 2023)[6], where the resulting



cheat software was found to evade cheat detection by anti-cheat software as well as human
judges. The success of the cheating agent in this work is potentially significant considering
the much larger action space for an agent in a first-person shooter game. This result,
as well as the findings of [3], both point to discrimination of non-human play being an
especially difficult task.

Data and Background

Dataset

Significant volumes of chess data are accessible within the research community, with re-
searchers such as those referenced in [9] and [I2] commonly leveraging a dataset sourced
from the open-access chess platform, lichess.org [2]. This dataset comprises records from
billions of human chess games annotated with player ratings, time control settings, and
other metadata useful for training. In this work, a set of 50,000 games was used, filtering
out those with short time-controls (games of less than 180 seconds per player), and those
of lower player elo to create a dataset of roughly 3M board-move pairs (b;, m?) Using
stockfish, we also generated a set of optimal moves in each board-state m;, so that the

final dataset was Z = {b;, m!", m} ﬁio

Data representations

There are a number of valid ways to represent the boards and moves for use in training.
Commonly, the boards are represented as bitboards, which can be seen as treating each
square as a one-hot encoding of the 12 possible piece/color combinations, (i.e. white pawns,
black pawns, white bishops, black bishops, etc.) resulting in a 12 x 8 x 8 input. We build
on thsis encoding method in two ways. First, we flip the boards such that they are always
from the perspective of the player whose turn it is. This explicitly communicates to the bot
whether it is playing as white or black. Second, we additionally encode information about
which squares are under attack by each player in the given board state. This additional
feature augmentation conveys useful information to the network, increasing the input size
to 14 x 8 x 8.

With regards to moves, they are often represented as one-hot encodings of the 4096 total
possible moves as described by the square the piece is moved from, and the square it is
moved to. However, this approach produces significantly unbalanced data, as some moves
occur more frequently than others. An alternative encoding which addressed this issue
is the use of two separate labels corresponding to the move’s from-square and to-square.
For example, a move from square 12 (e2) to square 28 (e4) would be encoded by two
separate 64 x 1 vectors which encode those two values. To highlight the benefits of the
latter approach, consider a dataset which includes a single sample for each of the 4096
labels of the first approach. When encoded with the second approach, the same data
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would correspond to roughly 30 samples per label. In this way, the latter encoding reduces
the output space and compensates for issues relating to unbalanced data and dimensional
sparcity.

Generator and Discriminator Architecture

Convolutional Neural Networks (CNNs) are a class of deep learning algorithms that have
revolutionized various fields, including computer vision, due to their ability to effectively
learn spatial arrangements of features within the input data. A CNN architecture that has
been used in the context of chess is the AlphaZero architecture used by both [12] and [9],
which consists of a series of convolutional, batch normalization and fully connected layers.
One unconventional aspect of this CNN architecture is the absence of MaxPooling Layers.
MaxPooling layers are frequently used in computer vision structures as they reduce the
dimensionality of the data while retaining the most salient information—such as edges and
depth. In chess, however, boards are of a small and fixed size (8x8 grid), and the spatial
relationships between pieces are crucial for determining optimal moves. MaxPooling would
reduce the spatial resolution of the board, potentially diminishing the network’s ability to
accurately capture these relationships, and thus most successful networks in this field elect
not to utilize them.

Our final architecture for the generator and discriminator both largely follow the AlphaZero
architecture, as seen in Figure 1.

Each convolutional filter is of size 3x3 with a unit stride and zero-padding of size 1. As



the input is of size 14 x 8 x 8, the initial convolutional layer takes in the 14 channels and
expands it to 64 channels. Subsequently, the 6 residual blocks each operate with 64 in and
64 out channels. The residual blocks are comprised of two layers of convolutions and layer
norms, with LeakyReLU activations. After which, a linear layer takes in the flattened 64
x 8 x 8 representation, (i.e., a 4096 dimensional vector) and outputs a 128 dimensional
vector. As a final step, we apply softmax to this vector. Since the first 64 values represent
the from square and the latter 64 represent the to square, we apply softmax to each 64
subvector separately, which allows us to find the best combination of from square and to
square.

Methodology

As previously mentioned, the discriminator and generator are convolutional networks of
largely similar architectures. The main difference is that the discriminator takes as input a
16x8x8 vector (a concatenation of the 14x8x8 board and the 128x1 move vector reshaped
to 2x8x8) and passes through a sigmoid to output a single value between 0 and 1. The
generator takes as input the 14x8x8 board, and outputs the 128x1 move vector. In keeping
with findings during research [7] [10], regularization methods such as dropout and weight-
decay were avoided, and an optimizer of Adam with o = 0.0002, 82 = 0.95 was used for
both networks. Additional hyper-parameters included the ratio of iterations with which
the discriminator and generator were trained to combat mode collapse.

While the output of the generator in this case is a distribution of probabilities, the human
moves are one-hot encodings. This resulted in the discriminator distinguishing between
the two output types rather than the moves they represented. A reasonable solution to
this issue would be the Gumbel-softmax [5]; however, due to time-constraints we decided
to implement a ”differentiable argmax” inspired by the reparameterization trick used in
variational auto-encoders. This argmax operator would take the product of the generators
output vector and a vector of equal shape created to zero-out all non-maximal terms
and re-normalize the maximal term to have value 1. For example, given the probability
vector
x =0.2,0.3,0.5]

our equation represents creating the vector

1
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and taking their element-wise product to get a one-hot encoding. While addressing the
initial issue, this likely leads to issues relating to the variance of the generator’s output
as well as the quality of the gradients, and represents a potential area of improvement for
future works.



As an additional augmentation on the traditional GAN architecture, we implemented a
generator loss function that works to incentivize optimal play as well as human-like play.
This new loss is defined as

Lag[0) = Lal0] —a ) Z m’ log(G(z;,0))

where the first term is the traditional GAN generator loss, and the second term represents
the categorical cross-entropy loss between the generator’s move and the optimal move as
determined by Stockfish. The constant @ € (0,00) is used as a scaling term to control
the influence of each term. This loss was used to train two additional networks, one that
used randomly initialized weights and one that used the weights of the behavioural cloning
network.

Evaluation

We separate the evaluation into two categories. First, we will evaluate the generator on
its quality of play as well as its ability to match the human move distribution. Second, we
evaluate the effectiveness of the discriminator in distinguishing between the generator and
the human moves.

For the purpose of evaluation we created a number of models. Our first model is “behavioral
cloning”—the baseline model—which is a chess agent trained using the CNN (non-GAN)
architecture directly on the human moves using a cross-entropy loss. We juxtapose the
remaining models against this benchmark to consistently measure the impact of the GAN
architecture on training. We test two versions of our GAN architecture: BasicGAN and
StockGAN. BasicGAN is a conventional GAN architecture while StockGAN is augmented
with the cross-entropy loss on the optimal moves Lg[0], as defined above. In both scenar-
ios, we conducted training on generators with randomized weights, as well as on generators
initialized with the weights of the benchmark model. Notably, models initialized with
the weights of the benchmark model were designated with the prefix “pre-trained” for
clarity.

Play Quality

The first metric we use to evaluate our generators is their win rate against the baseline
model. In figure 4, we can see the odds ratio of each generator winning against the baseline
model as a percentage:

A primary observation is that the pre-trained versions of the models significantly out-
performed the baseline model. It clearly shows that both pre-trained GAN architectures
improved play ability over the baseline model. Another important observation is that the



Model Odds of Winning Against Baseline
BasicGAN 0%
Pre-trained BasicGAN 89%
StockGAN 3%
Pre-trained StockGAN 87.5%
Figure 2

generators initialized with random weights failed to achieve any significant play ability,
even after a significant amount of training. This indicates that the GAN architecture on
its own is not sufficient to impart the context of chess; however, when also provided an a
priori distribution of moves given boards, the GAN is able to fine-tune the weights and
substantially improve play quality. The final observation from Figure 4 is that the added
cross-entropy loss from StockGAN didn’t make a significant contribution in play ability as
seen in the decreased win rate.

Distribution Quality

As observed earlier, the pre-trained Basic GAN exhibited the most exceptional performance
among all the models. Nevertheless, the objective of this paper is twofold. It aims to
develop the most effective generator while also playing human-like. To this end, in this
section, we assess the proximity of each model’s distribution to that of a human player. In
particular, we use the KL divergence, a metric that defines distance between distributions.
Thus, to evaluate how well our models compare to a human agent, we calculate the KL
divergence between the distributions of each agent with that of the human players. The
results can be found in Figure 5:

Model KL Divergence
Behavioral Cloning 0.0203
BasicGAN 10.3461
Pre-trained BasicGAN 0.02928
StockGAN 0.3855
Pre-trained StockGAN 0.04399
Figure 3

Clearly, simple behavioral cloning had the lowest divergence from the target distribution.
This was closely followed by the pre-trained Basic GAN and then by the StockGANs, and
finally, BasicGAN had the farthest distribution.

The results above shed light on the fact that a basic GAN—without any chess context
and without any aid from stockfish directing optimal moves—fails to emulate the chess



play-style of a human player and also fails to play chess at a decent level (as seen in the
previous subsection on play quality).

However, the moment that Stockfish, a ”teacher” with optimal moves, is added to the GAN,
the KL Divergence drops significantly. Thus, the extra loss term in the StockGAN archi-
tecture aided in pushing the generator’s play in a much more human-like direction.

Finally, we see that pre-trained models capitalized on their chess context and had quite
a low KL divergence. Unlike the previous case, Stockfish was slightly detrimental in the
training of the generator. This is reasonable since once the generator is very close to the
human distribution, Stockfish’s optimal moves begin to differ with human moves causing
the generator to stray from the human distribution.

The most interesting outcome of these statistics is the fact that all GAN models had a
higher KL divergence than plain behavioral cloning. The GAN architecture was chosen
due to its ability to reconcile the generator’s distribution with that of humans, however
our experimental results indicate otherwise. Combined with the fact that the pre-trained
BasicGAN had the highest win-rate against the baseline, it can be inferred that the GAN
architecture moved the generators away from human play and instead improved their level
of play. A similar trend held for the pre-trained StockGAN that also had a much better
play accuracy but also a more divergent distribution.

To visually compare the distributions, Figure 6 plots the distribution of human moves as
well as the distribution of behavioral cloning superimposed on that of the pre-trained Basic
GAN:

Human move distribution Pre-trained BasicGAN vs Behavioral Cloning
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Figure 4: Distributions of Human vs Al Moves

We first note that the distributions of behavioral cloning and pre-trained BasicGAN have
a heavy overlap. More importantly, they both significantly resemble the distribution of
the human moves. This visually demonstrates the findings produced by the KL divergence
statistics. We include the distributions of the other chess generators in the Appendix.



Combining the results from play quality and distribution quality, we find that while pre-
trained Basic GAN strayed slightly from the human distribution, it performed considerably
better than the baseline model. Overall, the marginal increase in KL Divergence is justified
by the superior play of the generator.

Discriminator Quality

As previously mentioned, our interest extends beyond merely creating a chess Al capable
of emulating human play to also developing a discriminator proficient in identifying non-
human behavior.

For all models, we found that the discriminator was initially able to separate the human
and Al moves. One of the drawbacks was that this separation was local to the generator
of the GAN. For instance, the discriminator from StockGAN would be apt in detecting the
StockGAN generator as Al but would fail to catch BasicGAN’s generator (and vice-versa).
The conclusion is that given the current discriminator architecture, it can be trained to
catch non-human play for select Als such as Stockfish but doing so across numerous Als
remains unfeasible.

An interesting property noted in the discriminator was its differing ability when given
moves vs games. As discussed in the model architecture, the discriminator was trained
on individual boards and their moves. When tested on individual move-board pairs, the
discriminator sometimes found it difficult to distinguish AI from humans. Conversely, when
the discriminator was tested on sequences of board-move pairs (of game-like lengths), it was
able to separate the two groups with high probability. This suggests inherent disparities
between a human’s overall game strategy and that of an Al, indicating promising prospects
for cheat detection assessments to be more effectively conducted at the level of entire games
rather than individual moves.

Finally, an initial limitation of the discriminator was its display of a memoryless trait—it
would lose its ability to distinguish the generator from past iterations after a few epochs.
This resulted in oscillatory behavior between the generator and the discriminator. To
address this issue, we opted to introduce a substantial set of samples from previous gen-
erators to enable the discriminator to maintain recollection of past decision boundaries.
This adjustment not only enhanced the discriminator’s performance but also bolstered the
generator’s play quality.

All in all, we found that the discriminators failed to generalize over different chess Als.
Still, we found that the discriminator architecture can be trained on individual chess Als
and when done so, it is most effective in detecting Al play in games as opposed to single
moves.



Conclusion

Chess Al is a large and well-developed field whose existence has made it incredibly easy
to cheat. As a result, there is a strong need for technologies capable of detecting not
just super-human play, but any “non-human” play styles that might be evidence of Al
use.

To measure the potential of such an anti-cheat we created ChessGAN, a GAN architecture
whose generator learned to play chess while the discriminator attempted to distinguish
between human and AI moves. Our experimentation revealed that while the discrimina-
tor struggled to distinguish between human and non-human moves universally, it showed
promise in learning to identify the particular Als it was trained on.

On the other hand, the discriminator was able to improve the play quality of the generator
when compared to a baseline model. Lastly, the discriminator did not enforce the human
move distribution on its generator as effectively as the baseline.

There are potential improvements on our frameworks, including use of the Gumbel-softmax,
a larger dataset and a discriminator which takes full games as input. All of which could
lead to meaningful gains for the generator and discriminator. Ultimately, there is promise
for GAN centered playing agent and anti-cheat architectures.
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Figure 5: Distributions of BasicGAN models
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